1

NCT 121: CNC PROGRAMMING AND NC TOOL OPERATION

History

1. Dec 4, 2025 by Sera Bird (sabird)

Viewing: NCT 121: CNC Programming and NC Tool Operation

Last approved: 2025-12-04T08:04:15Z Last edit: 2025-11-20T13:42:38Z

Effective Term Winter 2026

Rationale and proposal summary

A new pre-requisite in CAM programming (NCT-123) should be added to this course. The outcomes and objectives will be updated to reflect minor changes in new technology. The math level has been lowered as students no longer use trigonometry and advanced algebra in this course.

Course Cover

Full Course Title

CNC Programming and NC Tool Operation

Transcript Title

CNC Programming NC Tool

Subject Code

NCT - Numerical Control

Course Number

121

Department

Advanced Manufacturing (AMTD)

Banner Division

ATP

Division/College

Adv Tech/Public Serv Careers (AT)

Org Code

14450

Course Description

In this course, students will interpret working drawings of sample parts, write and edit programs, set up and operate Computer Numerical Control (CNC) machining equipment, and inspect the finished products to ensure accuracy. Processing the order of operations, speeds and feeds, program editing, set-up procedures, and program preparation are major topics presented. This is the first in a two-course study of Computer-Aided Design - Computer Aided Manufacturing (CAD-CAM) application in CNC milling and turning centers; knowledge of CAM software is required. The title of this course was previously Manual Programming and NC Tool Operation.

Planned Delivery Format

Face to Face

Has this course been approved for online or online blended?

No

Grading method

Standard Letter, Audit

CIP Code

159999 - Engineering/Engineering-Related Technologies/Technicians, Other.

Occupational Indicator

Yes

ACS Code

130

Credit hours, contact hours, repeatability

Repeatable for additional credit

No

Course credits

4

Lecture contact hours

30

Lab contact hours

60

Total Contact Hours

90

Expected Total Contact Hours

٩n

Prerequisites and prerequisite skill levels

College-Level Math

Level 3

College-Level Reading and Writing

College-level Reading and Writing

Approved Level I Prerequisite:

Academic Reading and Writing Levels of 6; Academic Math Level 3; NCT 110 and NCT 123, minimum grade "C"

Is concurrent enrollment an option for this prerequisite?

No

Course Assessment Plan Learning Outcome

Outcome

Create programs to manufacture workpieces on CNC milling machines.

Assessment #1

Assessment Tool

Outcome-related capstone projects

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Fall

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Departmentally-developed rubric

Who does the scoring?

Departmental faculty

Standard of success

75% of the students will score 70% or higher.

Assessment #2

Learning Outcome

Outcome

Create programs to manufacture workpieces on CNC lathes or turning machines.

Assessment #1

Assessment Tool

Outcome-related capstone projects

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Fall

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Departmentally-developed rubric

Who does the scoring?

Departmental faculty

Standard of success

75% of the students will score 70% or higher.

Assessment #2

Learning Outcome

Outcome

Troubleshoot and debug programs at the CNC machine controllers yielding parts to specification.

Assessment #1

Assessment Tool

Outcome-related capstone projects

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Fall

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Departmentally-developed rubric

Who does the scoring?

Departmental faculty

Standard of success

75% of the students will score 70% or higher.

Assessment #2

Course Objectives

ourse objectives			
	Objective(s)		
1.	Manufacture workpieces consisting of holes of various types.		
2.	Manufacture workpieces consisting of slots of varying depth.		
3.	Manufacture workpieces consisting of two-dimensional contoured shapes, pockets, and flanges.		
4.	Manufacture workpieces consisting of three-dimensional surfaces.		
5.	Manufacture workpieces consisting of grooves.		
6.	Manufacture workpieces consisting of intricate curved profiles requiring multiple types of cutting tools.		
7.	Manufacture workpieces consisting of screw threads.		
8.	Manufacture workpieces consisting of internal profiles.		
9.	Manufacture workpieces requiring multiple types of CNC machines.		
10.	Create documentation to correspond to written programs for use by setup operators.		
11.	Manufacture workpieces made from a variety of solid materials.		
12.	Use precision measurement tools to inspect workpieces for dimensional tolerances.		
13.	Locate published data for industry standard parts.		
14.	Program appropriate parameters for each module to simulate the final shape of the workpiece.		

General Education Area(s)

Area 1: Writing

No

Area 2: 2nd Writing or Communication/Speech

Nο

Area 3: Mathematics

No

Area 4: Natural Science

No

Area 5: Social and Behavioral Science

No

Area 6: Arts and Humanities

No

MTA General Education

No

Review

Is conditional approval requested?

Νo

Is this course currently conditionally approved, and you are now submitting it for full approval?

No

Key: 7668

Washtenaw Community College Comprehensive Report

NCT 121 Manual Programming and NC Tool Operation Effective Term: Fall 2022

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing

Discipline: Numerical Control

Course Number: 121 Org Number: 14450

Full Course Title: Manual Programming and NC Tool Operation

Transcript Title: Manual Programming NC Tool

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Course Change

Change Information:

Pre-requisite, co-requisite, or enrollment restrictions

Outcomes/Assessment

Rationale: Removal of MTT 102 as pre-req. MTT102 has been inactivated. NCT100 is the replacement and is a pre-req for the NCT101/110 course already required but may not enroll concurrently. The coursepack is also no longer used.

Proposed Start Semester: Fall 2022

Course Description: In this course, students will interpret working drawings of sample parts, write and edit programs, setup and operate CNC machine tools, and inspect the finished products in the process of manufacturing parts. Feeds and speeds, fixed cycles, program editing, set up procedures, and program preparation are major topics presented. This is the first in a two-course study of manual programming of CNC milling and turning centers. Students with experience equivalent to NCT 101 and NCT 110 may contact the instructor for permission to waive the prerequisites. Programming time outside of the classroom is required to be successful in this course.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 4

Requisites

Prerequisite

NCT 101 minimum grade "C"

and

Prerequisite

NCT 110 minimum grade "C"

General Education

General Education Area 7 - Computer and Information Literacy

Assoc in Arts - Comp Lit

Assoc in Applied Sci - Comp Lit

Assoc in Science - Comp Lit

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Construct programs using G-code and M-code machine tool language in proper module format.

Assessment 1

Assessment Tool: Outcome-related capstone projects

Assessment Date: Fall 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using the

departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score 70% or

higher on the capstone project.

Who will score and analyze the data: Departmental faculty

2. Apply the appropriate process for machining a product from start to finish.

Assessment 1

Assessment Tool: Outcome-related capstone projects

Assessment Date: Fall 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using the

departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score 70% or

higher on the capstone project.

Who will score and analyze the data: Departmental faculty

3. Troubleshoot and debug programs at the CNC machine tool controllers yielding parts to specification.

Assessment 1

Assessment Tool: Outcome-related department exam questions

Assessment Date: Fall 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The department exam will be scored using an answer sheet.

Standard of success to be used for this assessment: 75% of the students will score 70% or higher on the exam.

Who will score and analyze the data: Departmental faculty

Assessment 2

Assessment Tool: Outcome-related capstone projects

Assessment Date: Fall 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using the

departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score 70% or

higher on the capstone project.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Apply appropriate G-codes and M-codes to produce holes of various types and depth into different materials, using varying peck and dwell cycle and return plane conditions at the mill or lathe.
- 2. Apply appropriate G-codes and M-codes to produce patterns of holes at the mill.
- 3. Apply appropriate G-codes and M-codes to produce slots of varying depth into parts at the mill.
- 4. Apply appropriate G-codes and M-codes to produce linear and circular profile paths using cutter diameter compensation to control feature size into parts at the mills and lathes.
- 5. Apply appropriate G-codes and M-codes to produce circular pockets at the mills.
- 6. Apply appropriate G-codes and M-codes to produce irregular pockets, with and without islands, at the mills.
- 7. Apply appropriate G-codes and M-codes to face materials of part at the lathe.
- 8. Apply appropriate G-codes and M-codes to produce outside and inside contours on cylindrical parts at the lathes using roughing and finishing cycles.
- 9. Locate tool center positions about the part using geometry, algebra and trigonometry.
- 10. Create documentation to correspond to written programs for use by setup operators.
- 11. Create works to replace construct in all locations.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

Reviewer	<u>Action</u>	<u>Date</u>		
Faculty Preparer:				
Allan Coleman	Faculty Preparer	Jan 26, 2022		
Department Chair/Area Director:				
Allan Coleman	Recommend Approval	Jan 26, 2022		
Dean:				
Jimmie Baber	Recommend Approval	Jan 26, 2022		
Curriculum Committee Chair:				
Randy Van Wagnen	Recommend Approval	Feb 22, 2022		

Assessment Committee Chair:

Shawn Deron Recommend Approval Feb 23, 2022

Vice President for Instruction:

Kimberly Hurns Approve Feb 23, 2022

Washtenaw Community College Comprehensive Report

NCT 121 Manual Programming and NC Tool Operation Effective Term: Fall 2014

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Industrial Technology **Discipline:** Numerical Control

Course Number: 121 Org Number: 14450

Full Course Title: Manual Programming and NC Tool Operation

Transcript Title: Manual Programming NC Tool

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog , Time Schedule , Web Page

Reason for Submission: Course Change

Change Information:

Consultation with all departments affected by this course is required.

Rationale: Conditionally approved - seeking full approval.

Proposed Start Semester: Winter 2014

Course Description: This is the first in a two-course study of manual programming of CNC milling and turning centers. Students experience the entire process of part manufacturing by processing working drawings of sample parts, writing and editing of programs, set up and operation of CNC machine tools, and inspection of the finished products. Feeds and speeds, fixed cycles, program editing, set up procedures, and tape preparation are major topics presented. Laboratory time is required outside of class time. Students with experience equivalent to NCT 101 and NCT 110 may contact the instructor for permission to waive the prerequisites.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 30 Student: 30

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 4

Requisites

Prerequisite

MTT 102 minimum grade "C"

and

Prerequisite

NCT 101 minimum grade "C"; may enroll concurrently

and

Prerequisite

NCT 110 minimum grade "C"; may enroll concurrently

General Education

General Education Area 7 - Computer and Information Literacy

Assoc in Arts - Comp Lit Assoc in Applied Sci - Comp Lit Assoc in Science - Comp Lit

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Construct programs using G&M machine tool language in proper module format.

Assessment 1

Assessment Tool: Capstone Projects

Assessment Date: Fall 2015

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using

the departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will

score a minimum of 70% or higher on the capstone project. **Who will score and analyze the data:** Department Faculty

2. Apply the appropriate process for machining a product from start to finish.

Assessment 1

Assessment Tool: Capstone Projects

Assessment Date: Fall 2015

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using

the departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will

score a minimum of 70% or higher on the capstone project.

Who will score and analyze the data: Department Faculty

3. Troubleshoot and debug programs at the CNC machine tool controllers yielding parts to specification.

Assessment 1

Assessment Tool: Capstone Projects

Assessment Date: Fall 2015

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The capstone project will be scored using

the departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will

score a minimum of 70% or higher on the capstone project. **Who will score and analyze the data:** Department Faculty

Assessment 2

Assessment Tool: Department Exam

Assessment Date: Fall 2015

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: The department exam will be scored using an answer sheet.

Standard of success to be used for this assessment: 75% of the students will score a minimum of 70% or higher on the exam.

Who will score and analyze the data: Department Faculty

Course Objectives

1. Apply appropriate G & M codes to produce holes of various types and depth into different materials, using varying peck and dwell cycle and return plane conditions at the mill or lathe.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 2. Apply appropriate G & M codes to produce patterns of holes at the mill.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 3. Apply appropriate G & M codes to produce slots of varying depth into parts at the mill.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 4. Apply appropriate G & M codes to produce linear and circular profile paths using cutter diameter compensation to control feature size into parts at the mills and lathes.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 5. Apply appropriate G & M codes to produce circular pockets at the mills.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 6. Apply appropriate G & M codes to produce irregular pockets, with and without islands, at the mills.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 7. Apply appropriate G & M codes to face materials of part at the lathe.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 8. Apply appropriate G & M codes to produce outside and inside contours on cylindrical parts at the lathes using roughing and finishing cycles.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 9. Locate tool center positions about the part using geometry, algebra and trigonometry.

Matched Outcomes

- 1. Construct programs using G&M machine tool language in proper module format.
- 10. Create documentation to correspond to written programs for use by set-up operators.

Matched Outcomes

1. Construct programs using G&M machine tool language in proper module format.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>	
Faculty Preparer:			
Thomas Penird	Faculty Preparer	Dec 19, 2013	
Department Chair/Area Director:			
Thomas Penird	Recommend Approval	Dec 19, 2013	
Dean:			
Marilyn Donham	Recommend Approval	Jan 10, 2014	
Vice President for Instruction:			
Bill Abernethy	Approve	Feb 10, 2014	