1

UAT 183: REVIT FOR FIRE PROTECTION I (UA 7025)

History

1. Dec 3, 2025 by Sera Bird (sabird)

Viewing: UAT 183: Revit for Fire Protection I (UA 7025)

Last approved: 2025-12-03T08:04:52Z Last edit: 2025-12-01T22:30:06Z

Effective Term Winter 2026

Rationale and proposal summary

Update the UA course to reflect current technologies and trends in the industry.

Course Cover

Full Course Title

Revit for Fire Protection I (UA 7025)

Transcript Title

Revit for Fire Protect I 7025

Subject Code

UAT - United Association Training

Course Number

183

Department

United Assoc Dept (UAT Only) (UATD)

Banner Division

ATP

Division/College

Adv Tech/Public Serv Careers (AT)

Org Code

28200

Course Description

In this course, students will use Autodesk Revit Building Information Modeling (BIM) technology to create digital fire protection systems to be used at their local Training Center. Students will focus on the life safety systems used in the fire protection industry using HydraCAD for Revit. This course for virtual installation of wet and dry sprinkler systems will include subjects such as sprinkler location, hanging and bracing, system components, along with an introduction into hydraulic calculations. Limited to United Association program participants.

Has this course been approved for online or online blended?

Yes

Grading method

Standard Letter, Audit

CIP Code

469999 - Construction Trades, Other.

Occupational Indicator

Yes

ACS Code

130

Degree Attributes

BCL - Below College Level Pre-Regs

Credit hours, contact hours, repeatability

Repeatable for additional credit

No

Course credits

1.5

Lecture contact hours

22.5

Lab contact hours

1.5

Total Contact Hours

24

Expected Total Contact Hours

24

Prerequisites and prerequisite skill levels

College-Level Math

No Level Required

College-Level Reading and Writing

College-level Reading and Writing

Approved Level I Prerequisite:

Academic Reading and Writing Levels of 6

Course Assessment Plan Learning Outcome

Outcome

Design a wet-pipe sprinkler system, complete with hydraulic calculations.

Assessment #1

Assessment Tool

Outcome-related skills demonstration

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Summer

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Skills checklist

Who does the scoring?

U.A. instructors

Standard of success

80% of the students will score 80% or higher.

Assessment #2

Learning Outcome

Outcome

Design a dry-pipe sprinkler system, complete with hydraulic calculations.

Assessment #1

Assessment Tool

Outcome-related skills demonstration

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Summer

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Skills checklist

Who does the scoring?

U.A. instructors

Standard of success

80% of the students will score 80% or higher.

Assessment #2

Learning Outcome

Outcome

Design an appropriate fire pump room layout using BIM technology.

Assessment #1

Assessment Tool

Outcome-related skills demonstration

Anticipated Next Assessment Year

2025

Anticipated Next Assessment Term

Summer

Assessment Cycle

Every Three Years

Anticipated assessment population

All students from all sections

How the assessment will be scored

Skills checklist

Who does the scoring?

U.A. instructors

Standard of success

80% of the students will score 80% or higher.

Assessment #2

Course Objectives

	Objective(s)
1.	Discuss the history of fire systems, compare and contrast two-dimensional drawings to three-dimensional computer layouts.
2.	Discuss spacing and layout of sprinklers and branch lines.
3.	Discuss and create system mains and build a piping riser, hangers, and bracing for a wet and dry sprinkler system.
4.	Compare and contrast between installing the piping mains and components of wet and dry sprinkler systems using 2D drawings and BIM 360 software.
5.	Perform hydraulic calculations for water supply connections to city water mains.
6.	Discuss and create connections of water supply to a fire pump detail.
7.	Discuss the purpose of water supply connections, valve placement, and add Outside Screw and Yoke (OS&Y) valve on the suction side of the fire pump to diagrams.
8.	Compare and contrast between operating dry and wet sprinkler systems as related to Revit BIM drawings.
9.	Discuss code required components of a fire pump room layout.
10.	Design a wet sprinkler piping system using BIM technology.
11.	Calculate dimensions and material take-off of a dry sprinkler piping system for bid proposal.
12.	Design a dry sprinkler piping system using BIM technology.
13.	Calculate dimensions and material take-off of a dry sprinkler piping system for bid proposal.
14.	Design a standard fire pump room layout with predetermined measurements for system calculations.

General Education Area(s)

Area 1: Writing

No

Area 2: 2nd Writing or Communication/Speech

No

Area 3: Mathematics

No

Area 4: Natural Science

No

Area 5: Social and Behavioral Science

Νo

Area 6: Arts and Humanities

No

MTA General Education

No

Review

Is conditional approval requested?

No

Is this course currently conditionally approved, and you are now submitting it for full approval?

No

Key: 8839

Washtenaw Community College Comprehensive Report

UAT 183 Revit for Fire Protection I (UA 7025) Effective Term: Fall 2020

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: United Association Department **Discipline:** United Association Training

Course Number: 183 Org Number: 28200

Full Course Title: Revit for Fire Protection I (UA 7025)

Transcript Title: Revit for Fire Protect I 7025

Is Consultation with other department(s) required: No

Publish in the Following:

Reason for Submission: New Course

Change Information:

Rationale: New United Association Course

Proposed Start Semester: Fall 2020

Course Description: In this course, students will use Autodesk Revit Building Information Modeling (BIM) technology to create digital fire protection systems to be used at their local Training Center. Students will focus on the life safety systems used in the fire protection industry using HydraCAD for Revit. This course for virtual installation of wet and dry sprinkler systems will include subjects such as sprinkler location, hanging and bracing, system components, along with an introduction into hydraulic calculations. Limited to United Association program participants.

Course Credit Hours

Variable hours: No

Credits: 1.5

The following Lecture Hour fields are not divisible by 15: Student Min ,Instructor Min

Lecture Hours: Instructor: 22.5 Student: 22.5

The following Lab fields are not divisible by 15: Student Min, Instructor Min

Lab: Instructor: 1.5 Student: 1.5 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 24 Student: 24

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

General Education

Degree Attributes

Below College Level Pre-Reqs

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Design a wet-pipe sprinkler system, complete with hydraulic calculations.

Assessment 1

Assessment Tool: Skills demonstration

Assessment Date: Fall 2020

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Skills checklist

Standard of success to be used for this assessment: 80% of the students will score 80% or

higher.

Who will score and analyze the data: U.A. instructors

2. Design a dry-pipe sprinkler system, complete with hydraulic calculations.

Assessment 1

Assessment Tool: Skills demonstration

Assessment Date: Fall 2020

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Skills checklist

Standard of success to be used for this assessment: 80% of the students will score 80% or

higher.

Who will score and analyze the data: U.A. instructors

3. Design an appropriate fire pump room layout using BIM technology.

Assessment 1

Assessment Tool: Skills demonstration

Assessment Date: Fall 2020

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Skills checklist

Standard of success to be used for this assessment: 80% of the students will score 80% or

higher.

Who will score and analyze the data: U.A. instructors

Course Objectives

- 1. Discuss the history of fire systems, compare and contrast two-dimensional drawings to three-dimensional computer layouts.
- 2. Discuss spacing and layout of sprinklers and branch lines.
- 3. Discuss and create system mains and build a piping riser for a wet and dry sprinkler system. Provide hangers and bracing of the system.
- 4. Compare and contrast between installing the piping mains and components of wet and dry sprinkler systems.
- 5. Perform hydraulic calculations for water supply connections to city water mains.
- 6. Discuss and create connections of water supply to a fire pump detail.
- 7. Discuss the purpose of valve placement, and add Outside Screw and Yoke (OS&Y) valve on the suction side of the fire pump to diagrams.

- 8. Discuss the purpose and locations of check valves and butterfly valves needed on discharge of fire pump.
- 9. Compare and contrast between operating a dry and wet sprinkler systems as related to Revit BIM drawings.
- 10. Discuss code required components of a fire pump room layout.
- 11. Design a wet sprinkler piping system using BIM technology.
- 12. Calculate dimensions and material take-off of a dry sprinkler piping system for bid proposal.
- 13. Design a dry sprinkler piping system using BIM technology.
- 14. Calculate dimensions and material take-off of a dry sprinkler piping system for bid proposal.
- 15. Design a standard fire pump room layout with predetermined measurements for system calculations.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Reviewer	Action	Date		
Faculty Preparer:				
Tony Esposito	Faculty Preparer	May 19, 2020		
Department Chair/Area Director:				
Marilyn Donham	Recommend Approval	May 20, 2020		
Dean:				
Jimmie Baber	Recommend Approval	May 27, 2020		
Curriculum Committee Chair:				
Lisa Veasey	Recommend Approval	Jul 15, 2020		
Assessment Committee Chair:				
Shawn Deron	Recommend Approval	Jul 21, 2020		
Vice President for Instruction:				
Kimberly Hurns	Approve	Jul 28, 2020		